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Although the application of multigrid methods to the equations of

elasticity and structural mechanics has been suggested, few such applications

have been reported in the literature. In the present work, multigrid

techniques are applied to the finite element analysis of the deflections of a

simply supported Bernoulli-Euler beam, and various aspects of the multigrid

algorithm are studied and explained in detail.

In this study, six grid-fineness (or coarseness) levels, with 32 elements

on the finest grid level, were used to model half the beam. To test the

multigrid algorithm more severely, random initial approximations were used.

With linear prolongation and sequential ordering, the multigrid algorithm

yielded results which were of machine accuracy with work equivalent to 200

standard Gauss-Seidel iterations on the fine grid. Also with linear

prolongation and sequential ordering, the V(1,n) cycle with n greater than 2

yielded better convergence rates than the V(n,1) cycle.

Derivation of the restriction and prolongation operators was based on

energy principles. Conserving energy during the inter-grid transfers required

that the prolongation operator be the transpose of the restriction operator.

Maintaining an energy balance in the inter-grid transfers also led to improved

convergence rates. With energy-conservlng prolongation and sequential

ordering, the multigrid algorithm yielded results of machine accuracy with a

work equivalent to 45 standard Gauss-Seidel iterations on the fine grid. The

red-black ordering of the relaxation with either linear or energy-conserving

prolongation yielded solutions of machine accuracy in a single V(1,1) cycle,

which required work equivalent to about 4 iterations on the finest grid level.
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INTRODUCTION

Multigrid methods are known to be efficient solution techniques for

certain classes of partial differential equations, and their advantages in the

fLeld of fluid dynamics have been clearly established [1,2]. Although their

application to the equations of elasticity and structural mechanics has been

suggested, there have been few attempts to implement multigrid methods in

these cases.

Certain basic ideas underlying multigrid methods can be found in the work

of Southwell [3]. However, the work of Fedorenko [4] should be regarded as

the forerunner of the multigrid methods. Fedorenko solved the elliptic

difference equations, using concepts of error smoothing by Jacobi relaxation

and calculation of corrections on coarser grids. He also obtained an

asymptotic estimate of the computational complexity for the Poisson equation

on a rectangle. Fedorenko's technique was generalized by Bakhvalov [5] to

include the advection diffusion equation. At about the sametime, Wachpress

[6] proposed a two-grid method for elliptic systems. However, multigrid

methods remained virtually unused for almost a decade until the pioneering

work of Brandt [7], Nicolaides [8] and Hackbush[9] revived them in the mid-

1970's. Specifically, Brandt's early work established the actual efficiency

of multigrid methods, and demonstrated the capability of these methods to

treat nonlinear equations, general domains, local grid refinements, and

solution adaptivity. He demonstrated that the maximumnumberof computer

operations required to solve a discrete system of n equations in a Poisson

problem was on the order of n computer operations. Brandt also showedhow a

local Fourier analysis could be used for the theoretical investigation of

smoothing rates and optimization of procedures. The work of Nicolaides [8] is



the first systematic study of multigrid procedures relating to the finite

element discretization of elliptic equations. A complete historical

background of multigrid methods maybe found in Stuben and Trottenburg [10],

and Hackbush [11].

Initially, multigrid methods were successfully applied to elliptic

equations to which they are particularly well suited. Recently, their use has

been extended to parabolic [12] and hyperbolic [2] equations as well.

Developments in multigrid methods since the mid-1970's can be found in

proceedings edited by Hackbushand Trottenburg [13], Paddonand Holstein [14],

and McCormickand Trottenburg [15].

Manyproblems in elasticity and structural mechanics are governed by

elliptic equations; hence, it is quite surprising that their use in these

fields remains largely unexplored. The present work is an attempt to

introduce these methods to elasticians and computational structural

mechanicists who have had little or no exposure to multigrid techniques. The

focus of the present work is on a simple, one-dimensional example of a

Bernoulli-Euler beamfor the following reasons: it is amenable to local

Fourier analysis, yielding smoothing and convergence factors which give an

idea of the efficiency to strive for; it permits the derivation and

description of various multigrid elements without the complications of higher

dimensions; and it serves as a building block for implementing the algorithm

in higher dimensions.

Specifically, this paper describes the finite element discrctizdtLon of

the relevant beamequations and discusses the performance of the Gauss-Seidel

iterative technique for the solution of the resulting linear system of

equations. A particular geometric multigrid schemefor accelerating the

convergence (usually called the correction scheme) is presented. A general



procedure for defining the fine-to-coarse transfer of residuals (referred to

as restriction) and coarse-to-fine transfer of corrections (referred to as

prolongation) is described from a physical view-point. A discussion of

storage and work requirements is also included.

The convergence characteristics of the solution and the number of

floating point operations (work) necessary to achieve convergence are

presented. Results are given for two different orderings of the iterations

and for two different prolongation schemes. The effect of varying the number

of it_rdtions at each grid level is also studied.
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Superscripts :

f c

S

T

rotation

strain energy

fine and coarse grid functions, respectively

iteration cycle

transpose of a matrix or vector

FORMULATION OF THE PROBLEM

One-Dimensional Beam Problem

Consider a simply supported beam of length 2L subjected to the

distributed loading q(x), as shown in Figure I. Since the problem is

symmetric about the center of the beam, only one half of the beam needs to be

considered. Moment equilibrium requires that

d2w I x 2

EI --dx2 = qo Lx ( 2 6L 2
) 0 -< x SL (I)

where El is the flexural rigidity of the beam and qo is the maximum value of

the loading function at the center of the beam.

The boundary conditions for the simply supported beam are w(O) = w(2L) = O.

The exact solution for the loading shown in Figure I is

qoxL 3 4 2

To solve the problem using the finite element method, the structure is

idealized by a number of beam elements. For the two-noded beam element, the

displacement w and rotation dw/dx (= 9) are used as the nodal parameters. The



relevant boundary conditions are w(0) = 0 and _(L) O. The element stiffness

matrix [k], obtained from the shape functions given in Appendix A, for a beam

element of length b is given below.

[k] = EI

12/b 3 6/b 2 -12/b 3 6/b 2

6/b 2 4/b -6/b 2 2/b

-12/b 3 -6/b 2 12/b 3 -6/b 2

6/b 2 2/b -6/b 2 4/b

(3)

The element stiffness matrices are assembled into a structural stiffness

matrix K and, for any given loading and boundary conditions, the system to be

solved can be expressed in matrix form as the following equation:

KU : F (4)

wher'e K is a positive-definite, symmetric, square matrix, F is the load

vector, and U is the vector of unknown nodal displacements and rotations.

Conventional finite element analyses typically use direct solution

techniques, such as Gaussian elimination or Cholesky decomposition, to solve

equation (4). With increasing discretization, solution time can become

critical; thus, an attractive alternative to a direct solution is an efficient

iterative technique.

Iterative Solution Techniques

Two widely used iterative solution techniques are Jacobi iteration and

Gauss-Seidel iteration. The Gauss-Seidel method is used in the present work.

Gauss-Seidel Iteration

Starting with U 1 as the initial approximation to the vector of unknowns

s+l
U, Gauss-Seidel iteration uses the following algorithm to calculate um , the

th
m component of U:
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m-I N
s+l 1 s

u = -_ [ f - }. k u s+l - _ k .u.]
m k m mj j mJ j

mm j=l j=m+l

(m = 1,2 .... ,N) (5)

s th
where u and f are the m components of U and F, and s indicates the

m m

iteration number. The iteration is continued until the required number of

iterations has been completed or until the change in the current estimate of

the solution vector is less than some given tolerance.

Convergence Study

To study the convergence of the Gauss-Seidel method, the beam problem

shown in Figure I, with one half the beam modeled with 32 elements, was

considered. The convergence of the Gauss-Seidel iteration was monitored by

calculating the L2-norm of the residuals, denoted as llr112. In discrete

form, assuming all elements are of equal length b, the L2-norm can be

expressed as follows:

N 2IIri12-- > ri
i:I

(6)

where the residual r is defined as follows:
i

N

r1 : fl- L k..u.
j=1 zj j

(i = I to N) (7)

In the present finite element context, the residuals in each equation can

be thought of as the unbalanced forces and moments. So that all the residuals

will have the same dimensions, the moment residuals were normalized by b, the

element length. A non-dimensional L2-norm can then be computed as follows:



_ _b_e 2l lrl te wi(X)÷ rr°!x)/b 2iJ/(q°L)
- I

(8)

where r w and r 8 are the w and O residuals. The L2-norm has also been divided

by the factor q0 L (the total load on the beam) to produce a dimensionless

quantity.

To start the Gauss-Seidel iteration, a random initial approximation for U

was chosen. Figure 2 shows the L2-norm plotted versus the number of

iterations for two procedures. In the first procedure, the iterations were

performed sequentially from node I (at the support) to node 33 (at the center

of the beam). These results are shown by the solid llne in Figure 2. In the

other procedure, the so-called red-black ordering was used. In this ordering,

all the even-numbered nodes are designated red and all the odd-numbered nodes

are designated black. Iterations are performed on all the red nodes first,

then the black nodes. The results of the red-black ordering are shown by the

dashed line in Figure 2. For both methods, the L2-norm drops rapidly in the

first 50 iteration cycles; thereafter, the convergence slows, although the

red-black ordering produces slightly better results than the sequential

ordering for large numbers of iterations. However, even after 1600

iterations, the L2-norm for both is still quite high, indicating that the

iterative solution is still grossly in error. Appendix B further examines the

convergence of this problem.

This behavior is inherent in the Gauss-Seidel method, since Gauss-Scidel

efficiently removes the high frequency errors but not the low frequency

errors. However, the low frequency errors, since they are smooth, can be

approximated on coarser levels where they become higher frequency errors. On

coarser levels, these high frequency errors can then be removed more



efficiently. Even if the errors are still smooth on coarser levels,

iterations on the coarser levels require much less work due to the decrease in

the numberof unknowns. These ideas are exploited in the multigrid procedure

ir_ a recursive manner to improve the convergence rate.

MULTIGRIDPROCEDURES

In this section, the multigrid method is described. In multigrid

terminology, relaxation is used to meaniterations of somesmoothing

technique, such as the Gauss-Seidel described above; thus, to perform

relaxations on a set of equations meansto iterate using a smoothing method.

Often, the terms relaxation and iteration are used interchangeably in

multigrid literature. In the remainder of this paper, the term relaxation is

used to meanGauss-Seidel iteration, and n relaxations meansn iterations on

the system of equations.

The multigrid techniques are iterative methods that use a sequence of

grids and a simple relaxation schemesuch as Gauss-Seidel. As previously

stated, such relaxation is very efficient for removing the high frequency

errors on a given grid. The remaining low frequency errors becomehigher

frequency errors on coarser grids, where they can be effectively smoothed.

The key elements of the multigrid procedure are the relaxation technique and

the coarse grid correction. The multigrid algorithm described here is

generally called a geometric multigrid method.

Coarse Grid Correction

Consider the interplay between a coarse grid and a fine grid, where the

coarse grid has half as manynode points as the fine grid. Let the following

equation be the discrete finite element representation of the given problem on

a fine grid.
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Kfu f _ Ff (9)

If Vf is the approximation obtained on the fine grid after a few relaxation

sweeps, then the error ef _ U f.- Vf satisfies the following equation:

Kfe f _ rf (10)

where rf the residual on the fine grid is defined as rf _ F f - Kfv f

If e f is a smooth function, ef can be approximated by a coarse grid

c
function e which satisfies the following equation:

KCe c _ rc (11)

where rc = R (r f) _ R (Ff - Kfv f)

Here R is the fine to coarse grid restriction operator. Since the coarse

grid has half as many grid points as the fine grid, it is more economical to

solve equation (11) than (10). After solving equation (11) approximately by

some method, the approximate error ec is used to accelerate convergence of the

fine grid solution using the following:

V f ÷ Vf + p(e c) (12)

Here P is the prolongation operator that interpolates from the coarse grid to

the fine grid and the arrow ÷ means that the left side is replaced by the

right side.

c c
The process of calculating r , solving for e , and interpolating the

results to the fine grid is called the coarse grid correction. To solve

equation (9) efficiently, the above procedure is applied recursively using

multiple grids. This recursive procedure is described in the following

section.

Multigrid Cycle

Figure 3 shows the sequence of grid levels, k _ I to M, for a simply

supported beam where the element size bk satisfies the relation b k = 2k-lh and
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h is the element size on the finest grid level (k =I). The equation on level

k is written as follows:

Kkuk = Fk (13)

For k = I (the finest level), K1 _ K and F! = F , respectively the given

stiffness matrix and right-hand side of the original problem. The basic

algorithm must determine the solution of the algebraic system in equation (13)

on the finest grid, k = I. The fundamental idea is to use the solutions from

the progressively coarser grid levels to construct other finite element

solutions in the form of equation (13). This procedure is called smoothing;

in practice, it is carried out by means of relaxation. A commonly used

technique is the Gauss-Seidel method.

Starting on the finest level, k = I, let V 1 be an approximation to U I in

I FI KIv Iequation (13), and define the residual on the finest level as r = - .

If e I denotes the error U 1 - V I, the error and the residual are related

through the following equation:

KI I Ie = r (14)

k
For all subsequent levels (k > I), the residual r is the restriction of the

residual from the previous level k - I defined by the following equation:

k k-1 Kk-1 k-1r = R (r - e ) (15)

and, therefore, the equation to be solved is now the error equation:

Kke k = rk (16)

Given an approximate solution Vk to the equation (13), the multigrid

cycle for improving this approximation can be executed recursively as follows.

If k = I, perform n I relaxation sweeps on equation (13), thereby

I F I KIv Iobtaining an approximate solution V I. Calculate the residual r _ - .

12



Down-Sweep:

For I < k < M, repeat steps (I) and (2); for k _ M, go to step (3), wit_

these steps defined as follows:

(I)

(2)

On the current level k, start with an initial approximation

k

e = O, and perform nI relaxation sweeps on equation (16),

obtaining a new approximation e

Restrict the residual to the next coarser level, k + I, where

k÷1 r k Kke kr _ R( - ), and set k = k + I.

(3) If k = M, solve equation (16) exactly, set k _ M - I, and stdrb

the up-sweep.

Up-Sweep:

For M > k > I, repeat steps (4) and (5); when k = I, go to step (6),

where these steps are defined as follows:

k
(4) Update the approximation to the error e on the current level

by adding the prolongated correction of the error from the

previous coarser level:

k k (ek÷1e + e + P ) (17)

(5) Perform n2 relaxations on equation (16), starting with the

k
updated error e from equation (17). This will result in _n

k
improved approximation to e . Set k = k - I.

(6) For k = I, calculate an updated approximation to the solution

V I
+ V I + p(e2), and perform n2 relaxations on equation (14),

obtaining an improved approximation to V I.

The cycle described above in steps (I) through (6) is called a V-cycle,

indicated by the notation V(nl,n2) , where nI indicates the number of

relaxation sweeps performed at each level on the first or downward leg of th_

V-cycle and n2 indicates the number of relaxation sweeps performed at each

13



leve_ on the second or upward leg of the cycle. Figure 4 shows a schematic

drawing of a V-cycle for six grid levels. A flowchart for one V-cycle is

shown in Figure 5.

Restriction and Prolongation Matrices

From the foregoing description of the correction scheme, it is apparent

that the keys to the multigrid procedure are the restriction and prolongation

operators. These operators are related to each other as explained below.

From equations (16), the residual relations on the coarse and fine grid

are written as follows:

c Kfe f fKCe c = r = r (]8)

If e f ks smooth, it can be represented on a coarser level. In that case,

the coarse and fine grid errors can be related using the prolongation operator

P in the following equation:

f
e = Pe c (19)

f c
and the residuals r and r can be related through the restriction operator R

as follows:

c f
r _ Rr (2O)

c f
In equations (18), the errors, e and e , can be thought of as representing

c f
the displacements of the respective grids, while the residuals, r and r , can

be thought of as the forces required to produce these displacements. Thus,

the strain energy of the coarse and fine grids can be expressed in terms of

the erro_ equations by the following expressions:

c I f I T f
_ (eC)Tr c _ = _ (ef) r (21)

Fro_ equations (18), 19) and (20), the strain energies of the coarse and

fine grids may be rewritten as follows:

14



c I . f
_ _ _eC)TRr

f I eC)TpT f

(22)

e
If the strain energy is to remain constant during intergrid transfers,

_f c tomust equal . Thus, for arbitrary values of e and r f, R must equal pT

maintain an energy equivalence between grid levels.

One-Dimenslonal BeamExample

Before applying the multigrid cycle to the solution of the beamproblem,

the restriction matrix R and the prolongation matrix P must be defined.

Restriction Matrix

The restriction matrix R is defined to transfer the loads and moments

from a fine grid to a coarse grid. To form this matrix, the consistent load

relations must be formulated for transferring the loads and the moments. With

equations (A2) and (A3), it is possible to determine the nodal forces in the

beamelement equivalent to a concentrated force and momentapplied at the

center of the element. The details of this formulation are given below.

Concentrated force. The nodal forces equivalent to a concentrated force

PO applied at the center of an element of length b are found by equating the

work done by the concentrated force to the work done by the unknown nodal

forces.

Wp, the work done by the concentrated force, is equal to the force PO

times the displacement of that force:

We = P0 × w(x_b/2) (23)

The substitution of x _ b/2 into equations (A2) and (A3) yields the following

result:

Wp = P0X{Wl/2 + 61(b/8) + w2/2 - e2(b/8)} (54)

15



Similarly, the work done by the nodal forces acting at the two end nodes

can be written as follows:

Wn_ RlWl + R2w2÷ MI@I + M2@2 (25)

where RI, R2 are the nodal forces and MI, M2 are the nodal moments.

Wpshould equal Wn for any arbitrary values of Wl, w2, 01, and 02. Thus,

the consistent forces are

RI _ R2 = PO/2

M1 =Pob/8 M2 = -M I (26)

Concentrated moment. As before, the nodal forces equivalent to a

concentrated moment M0 applied at the center of the beam element are found by

equating the work done by the concentrated moment to the work done by the

unknown nodal forces.

WM, the work done by the concentrated moment, is equal to the product of

the moment M 0 and the rotation caused by that moment:

WM = M0 × @(x=b/2) (27)

To determine 8 in an element, equdtion (A2) must be differentiated with

respect to ×, yielding the following equation:

dw 6x 6x 2 4x 3x 2 ]
.... + ] + el[l - __ +

@ dx Wl[- b2 b3 b 7

+ ,6___x 6x 2] + @2[_ 2x 3x 2]
W2[b2 b3 --_ + b2 0 _ x _ b

(28)

Substituting x = b/2 into equation (28) and simplifying, the work due to the

concentrated moment M can be written as follows:

WM = Mo×[(-3/2b)w I - @I/4 + (3/2b)w 2 - @2/4] (29)

16



As for the concentrated force, the work due to the nodal forces is

written as follows:

Wn = R1w I + R2w 2 + MI01 + M202 (30)

where RI, R2 are the nodal forces and M I, M2 are the nodal moments.

Again, WM should equal Wn for any arbitrary values of w I, w 2, el, and O2 .

Thus, the equivalent nodal forces for the case of the concentrated moment can

be expressed as follows:

RI = - 3M0/(2b )

M I = - MO/4

R2 = -R I

M2 = M I (31)

Consistent residual transfer. The consistent nodal forces and moments

given in equations (26) and (31) are used to determine the residual weights

fo_ use in the energy-conserving inter-grid transfer.

To form the restriction matrix using the force and moment weights,

consider two grid levels as shown in Figure 6. Here the fine grid has three

node points and two elements, while the coarse grid has two node points and

one element. The lengths of the elements in the fine and coarse grids are b/2

and b, respectively. The restriction matrix R is defined to restrict the

forces and moments from the fine grid to the coarse grid. The transfer of the

forces and moments is shown in Figure 6 and defined below.

where

c f]r = R[r

f
r

= {R i M i Rj Mj Rk Mk }
T c T

r - {Ri, Mi, Rk, Mk,}

17



I 0 I/2 -3/(4b) 0 0 -]R _ 0 I b/4 -I/4 0 Ol (32)
0 0 I/2 3/(4b) I 0

0 0 -b/4 -I/4 0 I

This restriction matrix is valid only when the element size is doubled at each

coarser grid level.

Prolongation Matrix

The prolongation matrix defines the displacements on the fine grid given

the displacements on the coarse grid. To obtain this matrix, again consider

the two grid levels shown in Figure 6. Here the displacements w and % are

known on the coarse grid at nodes i' and k'. From these displacements, the

displacements at nodes i, j and k on the fine grid can be found in two ways.

In either method, the displacements at nodes i and k of the fine grid are the

same as the displacements of nodes i' and k' on the coarse grid. The

displacements at node j on the fine mesh are found in two ways. One method

assumes that the displacements at node j are the average of the displacements

at nodes i' and _' on the coarse mesh. This amounts to linear interpolation

as defined below:

where

c
w = PLw f ]

f 0 Wk 8k}T cw = { w i 0 i w 3 j w = { wl, 0i, Wk, 8k,} T

p

I 0 0 0

0 I 0 0

I/2 0 I/2 0

0 I/2 0 I/2

0 0 I 0

0 0 0 ]

(33)

18



in the other method, the element shape functions given in equations (A2)

and (A3) are used for the interpolation. The displacements at the center of

the element in the coarse_mesh are found by substituting x = b/2 into

equations (A2) and (A3). These are the displacements at node j on the fine

mesh. The prolongation matrix thus obtained is given below:

e

I 0 0 0

0 I 0 0

I/2 b/4 I/2 -b/4

-3/(4b) I/4 3/(4b) -I/4

0 0 I 0

- 0 -_0 0 I

(34)

The prolongation matrix obtained using the element shape functions is

exactly the transpose of the restriction matrix given in equation (32). Thus,

the use of this prolongation matrix maintains an energy equivalence between

grid levels. Again, this prolongation matrix is valid only when the element

size is doubled at each coarser grid level.

Although the restriction and prolongation operators derived here are for

a one-dimensional problem, the procedure used here can be applied to two- or

three-dimensional problems.

Storage and Work Requirements

The storage requirements necessary to solve the equation KU=F using

direct solution techniques are easily calculated from the total number of

degrees of freedom in the problem and the semi-bandwidth of the stiffness

matrix K. Since the multigrid method is being proposed as an alternate

solution technique, the storage requirements of the multigrid method should

also be addressed.
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Obviously, the multigrid method requires more storage space than direct

solution techniques if all entries within the bandwidth are stored. The

original stiffness matrix must be stored as the finest grid level and

additional grid levels must be accommodated. If the finest grid has N
e

elements, the coarser levels have Ne/2, Ne/4 , ..., etc., elements. Thus, the

total number of elements for M levels is

i__)
Ne + Ne/2 + Ne/4 + Ne/8 + ... + Ne/(2M-I) _ 2Ne(1 - 2M < 2Ne

(35)

The total number of degrees of freedom is computed in a similar fashion. In

the present one-dimensional case, for N e elements on the finest grid, there

are (Ne+1) nodes, each with 2 degrees of freedom. Hence, the total storage

required, assuming a constant seml-bandwidth B, can be found from the

following expression:

N N

N + • + ..2B( = 2B(M ÷

2Ne{1_ 1}
2M ) < 2B(2Ne÷M)

(36)

Thus, the maximum storage required is always less than 2B(2Ne÷M).

This computation assumes the storage of all entries within the bandwidth,

which may result in the storage of several zero entries. These zero entries

must be stored in direct solution techniques since during the solution phase

some zero entries may become nonzeroes. Examination of the Gauss-Seidel

iteration in equation (5) shows that only the nonzero terms of the matrices

n_d to be _torcd. How_:ver, storlng only the nonzero entrles requlrcs the:
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additional storage of pointer arrays for each row of the stiffness matrix.

Many finite-element stiffness matrices are sparsely populated and, in such

cases, the storage of only the nonzero terms, with the pointer arrays, can

considerably reduce the storage requirements comparedwith banded or profile

storage schemes.

With the definition of the coarser grids used here, the total storage

required by the stiffness matrices of all levels should be less than twice

that needed by the finest level. Additionally, the solution vectors for each

grid must be stored, as well as the load vectors, or right-hand sides.

Depending upon the structure of the problem, it maybe advantageous tostore

the restriction and prolongation matrices as well.

The work (number of floating point operations) done in a single V(nl,n 2)

cycle is equivalent to 2(ni+ n2) times the work of a single relaxation on the

finest grid level. This is determined as follows. In the V(nl,n 2) cycle,

n1+ n2 relaxations are done on the finest level while the total sumof the

relaxations done on the lower levels is always less than or equal to n_+ n2.

Because each subsequently coarser grid level has half as manydegrees of

freedom as the one before, the total numberof degrees of freedom in all

levels is always less than twice the number in the finest grid (see equation

(36)). The work done iterating on each level is directly related to the

numberof degrees of freedom that must be relaxed. Thus, the total work done

in a single V(nl,n 2) cycle is less than the work of 2(n1+n2) relaxations on

the finest grid level.

RESULTSANDDISCUSSION

In this section the performance of the multigrid algorithm in solving the

simply supported beamproblem of Figure I is evaluated. Six grid levels are
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used, where the finest mesh (level I) has 32 elements modeling half the beam,

the next coarser grid (level 2) has 16 elements modeling half the beam, and_so

on until the coarsest grid (level 6), which has one element modeling half the

beam.

The two prolongation operators mentioned earlier are considered: a

simple linear interpolation and a prolongation operator based on a constant

energy in each grid level.

Results are presented for a V(nl,n 2) cycle. The convergence of the

solution and the work necessary to achieve convergence are presented.

Convergenceof the solution was monitored with the L2-norm of the

residuals, defined in equation (8). While the displacements converge to the

exact solution within machine accuracy, the L2-norm, because of its

definition, converges with less accuracy than the displacements. Appendix C

further explains this behavior.

Results are given first for sequential ordering with linear prolongation,

for varying values of nI and n2, and then with the energy-conservlng

prolongation. Finally, the effects of red-black ordering are presented.

Sequential Orderlng

Linear Prolongation

Figure 7 presents the L2-norm plotted against an increasing numberof V-

cycles for both random (solid line) and zero (dashed line) initial approxima-

tions. These results are for a V(2,1) cycle where the coarsest level was

solved exactly. As seen in the figure, at the end of 20 V-cycles, the L2-norm

is on the order of 10-3 for the random initial approximation and on the order
--.6

of 10 for the zero initial approximation, indicating that the multigrid

solution is close to the direct solution obtainable on the finest grid level.

The r_ces of convergence (indicated by the slope of the curves) are almost
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identical for both the zero and random initial approximations. To test the

algorithm more severely, only the random initial approximation is used in the

remainder of this work. The work necessary to achieve the accuracy shown in

Figure 7 is 2(ni+ n2) times 20 V-cycles, or equivalent to the work of 120

relaxations on the finest grid level.

Varying nI and n2

To study the effect of varying the numberof relaxations on either leg of

the V-cycle, two cases with linear prolongation were considered. In the first

case, the numberof relaxations on the downwardleg of the cycle was held

constant at nI _ I, while the number of relaxations on the upward leg of the

cycle was increased from I to 5 (n2 _ I to 5). Figure 8 shows the L2-norm as

a function of increasing n2. As expected, the rate of convergence improves
-7

with increasing n 2. For the V(1,5) cycle, the L2-norm is on the order of 10

after about 18 V-cycles. The work of 18 V(1,5) cycles is equivalent to that

of 216 relaxations on the finest grid level.

The second case, n2 _ I while nI was increased from I to 5, is shown in

Figure 9. As in the previous case, the rate of convergence improved w_th

increasing numbers of relaxations. For the V(5,1) cycle, the L2-norm is on

-6 -7
the order of 10 after about 18 V-cycles, compared to 10 for the V(1,5)

cycle of the previous case. As before, the work of 18 V(1,5) cycles is

equivalent to that of 216 relaxations on the finest grid level. A comparison

of Figures 8 and 9 shows that the V(1,n) cycle yields better convergence than

the V(n,1) cycle when n is greater than 2. This can be explained in the

following manner.

A prolongation from level k to k-1 introduces high frequency errors at

level k-1. This is illustrated schematically in Figure 10 for linear

interpolation. Level k represents a coarse mesh with 2 elements, AC and CE.
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Level k-1 represents a fine mesh with 4 elements, AB, BC, CD, and DE. Using a

linear prolongation, the displacements on level k-1 at B and D are found as

w B = (wA + Wc)/2 and wD = (wC + WE)/2 with similar expressions for the

rotations at B and D. The errors in the displacements at B and D are larger

than at C and E, as shown in the Figure 10(b). The total error can be

represented as a low frequency (smooth) error plus high frequency

(osc_llatory) errors. These high frequency errors can be easily eliminated on

level k-1 with a few relaxations. The V(1,n) cycle does precisely this, and

hence the better convergence compared with the V(n,1) cycle.

Energy-Conserving Prolongation

Figure 11 shows the variation of the L2-norm as a function of the number

of V-cycles for the V(1,n I) cycle with n I = I, 2, ..., 5 and P _ R T (energy-

conserving prolongation). The larger the value of nI, the faster the solution

converges. For nI equal to 3, 4 or 5, the multigrid results converge to the

exact solution within the accuracy of the machine in approximately 8 V-cycles

with a work equivalent to about 96, 80 or 64 relaxations on the finest grid.

For nI equal to I and 2, s'lightiy more V-cycles were required for convergence

for a work expenditure equivalent to 48 and 60 iterations, respectively, on

the finest grid. Thus, although for nI equal to I or 2, more V-cycles are

required for convergence, less work is needed than when n I is equal to 3, 4 or

5.

The energy-conserving prolongation (P = R T) was also used with the V(n,1)

cycle. Two cases are compared in Figure 12. The results for the V(n,1) cycle

are virtually identical to those for the V(1,n) cycle. This is expected since

the energy-conserving prolongation introduces little or no high frequency

_rrors from the coarse level to the fine level.
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Figure 13 compares the exact solution to the multigrid solution for

energy-conserving prolongation with the V(2,1) cycle. Figure 13 shows ew and

ee, the errors in w and 8, respectively, where ew and ee are calculated as

w(x) - w(x) e(x) - e(x)
exact exact

ew w 0
max max

Here w and e are the maximum values of the exact solution. Figure 13
max max

shows ew and e 0 at the end of the first, third, fifth, and seventh V-cycles.

After each V-cycle, the maximum error drops significantly, and after the

seventh cycle, the multigrld solution has converged to the exact solution

(within machine accuracy).

Red-Black Ordering

To study the performance of the red-black ordering scheme in the V(nl,n 2)

multigrid cycle, all the even-numbered nodes were designated as red and all

the odd-numbered nodes were designated black. At each grid level, all the red

nodes were relaxed first, followed by the black nodes, in a V(1,1) cycle. For

both the linear and energy-conserving prolongations, the solution converged

within machine accuracy in a single V-cycle. Thus, with the red-black

ordering, convergence is obtained with a work equivalent to only 4 relaxations

on the fine grid. The excellent performance of the red-black ordering scheme

for this one-dimensional problem is expected and can be explained by a cyclic

reduction method.

In the cyclic reduction method, the displacement and rotation at node i

(red node) can be expressed in terms of the displacements and rotations at

nodes i-I and i+I (black nodes), and the node i displacement and rotation can

be eliminated from the system. This can be done for all the red nodes, thus
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producing a muchsmaller set of equations. The sameprocedure can be employed

repeatedly until only one or two nodes remain. The solution for the original

system is then found by reversing the process. This type of process, which

can be applied only to one-dimensional problems, always produces an exact

solution in one cycle. For this problem, the current process with red-black

ordering is exactly equivalent to this cyclic reduction scheme, and thus

converges in one cycle.

CONCLUDINGREMARKS

Multigrid procedures were developed for use in one-dimenslonal finite

element analysis. Several aspects of the multigrid procedure were studied and

explained in detail.

The key elements of the multigrid method are the restriction and the

prolongation operators. These operators were derived based on energy

principles. A general procedure for obtaining the restriction matrix was

outlined. This procedure considered the residuals from the iterative solution

as the loads on the fine grid and transferred these loads, in an energy-

conserving manner, onto the coarse grid. The procedure outlined here can be

used with any multigrid finite element procedure.

Various aspects of the V-cycle multigrid algorithm were studied in the

analysis of the deflections of a one-dimensional, simply supported Bernoulli-

Euler beam. From this study, for six grid levels with 32 elements in the

finest grld, the following conclusions were drawn.

I, With linear prolongation and sequential ordering, the multigrid

algorithm yielded results which were of machine accuracy with work

equivalent to about 200 standard Gauss-Seidel relaxations on the

finest grid.
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2. With linear prolongation and sequential ordering, the V(1,n) cycle

with n greater than 2 yielded better convergence rates than the

V(n,1) cycle.

3. Maintaining an energy balance during the inter-grid transfers

required that the prolongation operator be the transpose of the

restriction operator.

4. The multigrid algorithm showed improved convergence rates when energy

was conserved in the inter-grid transfers. With the energy-

conserving prolongation and sequential ordering, the multigrid

algorithm yielded results which were of machine accuracy with a work

equivalent to about 50 standard Gauss-Seidel relaxations on the

finest grid.

5. The red-black ordering of the relaxation with either the linear or

energy-conservlng prolongation yielded solutions with machine

accuracy in a single V(I,1) cycle. This is equivalent to performing

about 4 relaxations on the finest grid level.
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APPENDIXA - BEAMELEMENTSHAPEFUNCTIONS

For an element with two nodes (four unknowns), the deflected shape w can

be assumedto be given by a cubic function, i.e.,

2 _4x3w = _I + _2 x ÷ a3x + 0 _ x _ b (AI)

Equation (AI) can be written in terms of shape functions N i (i z I to 4)

cor_responding to w. and 0. (j = 1,2) as follows:
J J

w(x) = w I N I + 61 N2 + w2 N3 + _2 N4 (A2)

where

3x 2 2x 3 2x 2 x3

N I = I b2 + b3 N2 I x - -_-- + b-_

3x2 2x 3 x2 x3

N 3 = b2 b3 N4 I _ _-- ÷ b--_

0 <.x _b (A3)

Here b is the element length.

The element stiffness matrix, obtained from these shape functions, is

given in the text (equation (4)).
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APPENDIXB - CONVERGENCEOFTHEGAUSS-SEIDELMETHOD

The Gauss-Seidel iterations efficiently remove the high frequency errors

but not the low frequency errors. This appendix demonstrates the efficiency

of Gauss-Seidel iterations in removing the high frequency errors and discusses

the convergence of the Gauss-Seidel method.

Figures BI and B2 show the efficiency of the Gauss-Seidel method in

removing the high frequency errors. A random initial approximation was used

for these figures. The displacement w at each node, normalized by the exact

displacement at the center of the beam, is shownat the end of the I st, I0th,

50th, I000th, I0000th, and 20000th iteration in Figure BI. Similar

information for the rotation e at each node is given in Figure B2. For both

the displacement w and the rotation e, the majority of the high frequency

errors have been smoothedout by the I0 th iteration. The remaining smooth

errors are not handled efficiently by the Gauss-Seidel method.

Figures B3 and B4 present the iterative solutions for the displacements

and rotations for a zero initial approximation. The displacement w at each

node, normalized by the exact displacement at the center of the beam, is shown

at the end of the 500th, IO00th, 5000th, IO000th, 20000th, and 30000th

iteration in Figure B3. Similar information for the rotation e at each node

is given in Figure B4. Here again the Gauss-Seidel method performs very

inefficiently.

In fact, the performance of the Gauss-Seidel method is so poor for this

example that even after 30000 iterations, the iterative solutions are still

grossly in error. Figures B5 and B6 comparethe exact solution to the

iterative solution for two different initial approximations. Figure B5 show_

w, the displacements, and Figure B6 shows e, the rotations after 30000
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iterations. In both figures, the solid line represents the exact solution

while th_ dashed and dash-dot line represent the zero and random initial

approximations, respectively. Even after 30000 iterations, the magnitudes of

both iterative solut{ons are grossly in error and, obviously, the nature of

the initial approximation still has a large effect on the iterative solution.

The very slow convergence in this problem is also due, in part, to the

nature of the stiffness matrix for the beamexample. The Gauss-Seidel

iterative method works best for diagonally dominant matrices. However, as

seen in equation (3), the beamstiffness matrix Contains off-diagonals terms

of the sameor higher order than the diagonals terms. Hence, the poor

performance of the Gauss-Seidel in this example is not unexpected.
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APPENDIXC - ERRORANALYSIS

This appendix examines the relationship between the error in the

displacements and the error in the L2-norm of the residuals. As stated

previously, although the displacements appeared to have converged to the
-14

direct solution within machine accuracy (10 ), the L2-norm of the residuals

was on the order of 10-9. Figure CI shows the errors in w and eb, normalized

by the maximumdisplacement, where the error in the displacement is computed

as the difference between the iterative solution displacement and the direct

solution displacement. Figure C2 presents the normalized force and moment

residuals along the length of the beam. As seen in Figure CI, the
-9

displacement errors are smooth and on the order of 10 , and while the

residuals (Figure C2) are also on the order of 10-9 they are oscillatory
!

Consider the equation for the ith re_idual:

N

ri = fi - } kijvj (CI)
j=1

where vj is the current approximate solution.

follows:

v. - d.- e, (C2)
3 J 3

where dI is the direct displacement solution at node j and ei represents the

error at node j.

N

Since by definition fl "J_1 kljdj' equation (CI) can be rewritten as

follows:

The term vj can be expressed as

N

r 1 = _ kije j (C3)
j=1
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or,

N N

- k. e _ _ IkljIIejlrl J}l lj j j=1
(C4)

If all the errors ej (j : I, 2, ..., N) are on the order of e m, the

accuracy of the machine, then the following is true:

N

r i S em _- Ikijl
j=l

(C5)

To keep the dimensions the same, in the current problem of a one-

dimensional beam, the error in w is denoted by e while the error in @ is
W

denoted by be 9. Equation (C5) then reduces to the following:

r .<e EI [12 + 6 + 24 + 12 + 6]

w. mi

(C6)

El L6 + 2 + 8 + 6 + 2]
re. Ib _ em _-_i

So that the residuals of the forces and moments will have the same dimensions,

the moment residuals have been divided by b, the element length.

Equations (C6) can be written in a nondimensional form as follows:

r /(qo L) _ _ 8(L/b) 3W.
I

re /(qobL) _ _ 24(L/b) 3
1

(C7)
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where e = e /d arld d is the maximum displacement from the direct
m max max

solution of the stiffness equations.

-14), then the
Thus if em is on the order of the machine aqcuracy (em _ 10

nondimenslonal residuals for the w and 8 degrees of freedom for a beam with 32

-8 -8
elements can be at most 1.96xi0 and 0.786xi0 , respectively. When the

residuals are smaller than these maximums, as in Figure C2, the solution

displacements have converged within machine accuracy, and no further

improvements can be expected.
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simply supported beam

1w1 1  2w2
beam element

q(x) =
qox/L O_<x<L

qo(2-x/L) L _<x _<2L

distributed loading

Figure I. Simply supported beam under distributed loading.
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simply sUpported beam

Grid Element
level size

1 L/32
L _l
r L -_

2 L/16

qo

3 L/8 .........

4 L/4 -* = -- *- -

5 L/2 , : -

g -_ '

Figure 3. Sequence of grids for simply supported beam.
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6

,ct solution found
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Figure 4. V-cycles for six levels, V(nl,n2).
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Figure 6. Consistent transfer of force and moment residuals.
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Figure 9. L2-norm for linear prolongation and V(nl,1) cycles.
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Figure 10. High frequency errors due to linear prolongation.
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Figure 13. Continued.
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